Periods/week : 3 Periods & 1 Tut /week.                                                                  Ses. : 30 Exam : 70 Examination (Practical): 3hrs.                                                                                   Credits: 4

  1. Introduction: Sets-Operations on sets-relations-functions-Proof methods and problem solving strategies-Fundamentals of Logic- Logical inferences-Methods of proof of an implication-First Order logic and Other Proof methods-Rules of inference for quantified Propositions-Mathematical Induction
    Elementary Combinatorics: Basics of Counting- Combinations and Permutations-Their Enumeration    with    and    without    repetition-Binomial    coefficients-Binomial    and Multinomial Theorems-The Principle of Inclusion-Exclusion.
    Recurrence    Relations:    Generating    Functions    of   Sequences-Calculating    their Coefficients-Recurrence relations-Solving recurrence relations-Method of characteristic Roots- Non-homogeneous Recurrence relations and their solutions
    Relations and Digraphs: Relations and Directed Graphs-Special Properties of Binary relations-    Equivalence    Relations-Ordering    Relations-Lattices    and    Enumeration- Operations on relations-Paths and Closures-Directed Graphs and Adjacency matrices- Applications of sorting, searching and topological sorting.
    Graphs:    Basic    concepts-Isomorphism-subgraphs-Planar    Graphs-Euler’s    formula- Multigraphs  and  Euler  circuits-Hamiltonian  graphs-Chromatic  numbers-Four  color theorem.
    Trees:  Trees and their properties-Trees as graphs-spanning trees-Directed trees-Binary trees-Their traversals-Arithmetic and Boolean expressions as trees- height balanced trees.

     

    Text Book:
    “Discrete  Mathematics  for  computer  scientists  &  Mathematicians”  by  Joe  L.  Mott, Abraham Kandel & T. P. Baker, Prentice Hall of India Ltd, New Delhi

     

     

    Reference Books:
    1)   “Discrete mathematics and its applications” by Keneth. H. Rosen, , Tata McGraw- Hill Publishing Company, New Delhi
    2)   “ Discrete mathematics” by Richard JohnsonbaugPearson Education, New Delhi

tejus mahiCSE 2.1 SyllabusIT 2.1 SyllabusCSE,CSE Syllabus,Discrete Mathematical Structures - I Syllabus,IT,IT Syllabus
Periods/week : 3 Periods & 1 Tut /week.                                                                  Ses. : 30 Exam : 70 Examination (Practical): 3hrs.                                                                                   Credits: 4 Introduction: Sets-Operations on sets-relations-functions-Proof methods and problem solving strategies-Fundamentals of Logic- Logical inferences-Methods of proof of an...